
CORTEX DISK OPERATING SYSTEM

VERSION 1.10

USERS GUIDE

CORTEX DISK OPERATING SYSTEM

VERSION 1.1~

USERS GUIDE,

SECTION

1 INSTALLATION

2 BOOT

3 PROGRAM STORAGE

4 DATA STORAGE

5 UTILITY PROGRAMS

6 INTERNAL ROUTINE DESCRIPrIONS

7 ERROR CODES

1. INSTALLATION

When the "BOOT" command is executed the disk in drive ¢ is read into

memory. The command is told what type of disk and disk drive by the

DENSITY and SIZE jumper settings.

Jumper In Out

DENSITY

SIZE

SINGLE

5i"

DOUBLE

8"

Note that these settings are used at "BOOT" time only and that the

CDOS software reconfigures the drive size and density. (See CONFIG

utility).

(For 51" drives that are 2 sided make sure that the signal from IC83

pin 8 is connected to pin 32 of the disk drive connector).

2.

The "BOOT" command reads the first sector of the first track on drive 'I.
In this sector is a parameter block with a checksum~ The command verifies

the checksum before using the parameter block to read in the core of the

disk operating system. The parameter block specifies the load address,

entry point and length of the core. The core is always on track 'I of

drive 'I. If "BOOT" fails to read the d:i,s1;: or the checksum fails then it

will start again, looping indefinitely trying to read the disk. The only

way to stop this loop is to press the reset button. If "BOOT" reads the

parameter block successfuJ.ly but then encounters an error while reading in

the core of the disk operating system then the error message:

II **** SYSTEM ERROR ****"

will be displayed. Once the core has been loaded successfully then it is

exeouted as an assembly language program. The oore tree to find and load

the program file oalled IJSYS~II. This file oontains extensions to the oore

system such as data file support and also reC"configures the disk size/density.

If the oore fails to find the file then it will just display the n*Readyu

banner and you will only have program load and Save faoili ties available.

If the. oo;r;s i,s s~9.cessM in. l:oadi:rlg tl1~ IIsysTEf1(tn file then t:tlis iip e:x:ecuted:

as an assembly language program and the 'batl!ler message

"CORTEX DISK OPERATING SYSTEM 1 ~ 1'1 @ 1984"

will be displayed. (Note that the revision number may change as improvements

are made to the software.)

http:successfuJ.ly

At this point it is strongly recommended that the user (with to

the FORMAT and DISKCOFY utilities in Section 5) make a copy of system

disk.

Type in the following:

LOAD ¢, "FORMAT"

this will load the disk format utility. Remove the system disk from drive

¢ and insert a blank disk. In answer to the question which drive type in

¢. After the program has finished and asks again which drive just press

"return". Now remove the initialised disk and insert the system disk.

Type in the following:

LOAD ¢, "DISKCOFY"

this will load the physical disk copy util! ty. The "Master" and "Copy"

drive numbers are both ¢ and press return in a.nswer to the question "Number

of Tracks". The program will read in several tracks from the maater disk

and then prompt you to remove the master and insert the copy disk. It then

writes the data to the copy and then prompts you to put back the master.

This is repeated until all of the master has been copied. After the program

finishes you can now put your master system disk in a safe place and use your

new system disk. Use the utility "LDm" to list the contents of the system

disk. You may want to use the "CONFIG" utility to optimise the system

software for your disk size/type and configuration.

3. PROGRAM STORAGE

Once the operating system is installed then it alters the routines for

loading and saving programs to allow both cassette and disk to be used.

SAVING BASIC PROGRAMS

The statement syntax for the "SAVE" command is changed to the following:

(line number) SAVE <drive, "filename" > >,EX ~
(,REP)

The "SAVE" command can be executed as part of a program henoe it can have a

line number associated with it. The drive number oan be either a digit ¢
to 3 or a variable assigned a value between ¢ and 3. The filename is either

a text string enclosed in quotes or a string variable, but only the first 8

characters are used. Optional items are "REP" which specifies replace an

existing file of the same name if it exists. Programs can be saved with

the option of automatic execution upon load, this is specified with the "EX"

keyword. Note that "EX" and "REP" can occur in any sequence. Some example

commands are:

SAVE 1, IITESTIf , EX. save on drive 1, filename TEST with auto run option

1¢ SAVE D, tNC%) save on drive D, filename in tNC~)

LOADING PROGRAMS FROM BASIC

The statement syntax for the "LOADti command is changed to the following:

(line number) LOAD (drive, "filename").

The "LOAD" command can be executed within a program to cause chaining from one

program to another, hence the optional line number. The drive number can be

either a constant or a variable assigned a value between ~ and 3. The file

name is either a string of characters enclosed in quotes or a string variable.

Note that only the first eight characters are significant. If the program

was saved with the automatic execution option specified then the program will

start execution immediately after loading. You can load both BASIC and

Assembly LanguageplDgraIDS from the BASIC environment. An example of the

command is:- LOAD 3, "MYPROG"

CASSET'lE SUPPORT

The command syntax as described in the Cortex Users Guide for the "SAVE"

command now applies to the "CSAVE" command and likewise the syntax for "LOAD"

now applies to "CLOAD" 0

SAVING ASSEMBLY LANGUAGE PROGRAMS FROM THE MONITOR

The syntax for the liD" memory dump command has an added question as shown

below:

D < start address > <. stop address) ~entry pOint~

1M ;;: <.. filename)

(y;l]t) ~~~
Device ? (0)

(d:rive)

The memory frOIl1 start to stop is writteh either to a disk drive (¢ to 3) or

to cassette (C). The optional entry point is used for auto-run files to

execute immediately upon load. The 1M is the filename, only the first 8

oharacters are used. An example is given below:

3.5

IDT = MYPROG

Auto-run? (yIN) y

Device? 1

LOADING ASSEMBLY LANGUAGE PROGRAMS FROM TEE MONITOR

The syntax for the "L" memory load command has an added question as shown

below:

L IDT = l.. filename >
Device? 	 (0)

(drive)

The specified file is loaded into the area of memory that it was saved from.

Either a disk drive (¢ to 3) or (0) cassette may be used to read the program

from.

DA'1'A STORAGE

The operating system supports both sequential access files and random access

files. A sequential file allows reading or writing of consecutive elements.

A random access file allows any element to be read or written in any order

but requires that each element be of a fixed size. Sequential files support

both variables and strings of any length mixed in a file. Strings are

written in compressed form where a sequence of more than two spaces is shrunk

to a control character followed by the number of spaces. The converse

operation occurs on reading a string in a sequential file where the control

character is detected and the spaces are restored.

CREATING A DATA FILE

All data files are created as part of the OPEN command. The syntax for the

OPEN command is:

(line number) OPEN (. drive, "filename", filevariable) (,CRE (,record size»

The line number is optional.

The drive number is between ¢ and 3 and can either be a variable or a constant.

The filename is either a text string enclosed in quotes or a string variable,

but only the first eight characters are used.

The filevariab~,e is a variable used to store a pointer for use by the GET, PUT

and CLOSE commands.

Optional items are "CRE" which will create a data file if it does not exist.

If you do not specify a record size then a sequential file is created otherwise

a random file is created.

EG:

OPEN D,,¢NAM (¢), F, CRE, 1¢¢

or

20 OPEN 1, "DATA", F

WRITING TO A DATA FILE

The "PUT" cDmmand writes to. a data file. The syntax fDr sequential files

is:

(line number) PUT < filevariable, variable") (, variable, •••••••)

and fDr randDm files the syntax is:

(line number) PUT (filevariable, re~Drd, variable> (,variable, •••••••)

It

aLr\ 'be (.J{'~,..~ or f\~ b..."" nD-r O:ttc",la.t141'

The line number is DptiDnal.

The filevariable is the variable name used when the file was Dpened.

For random files you must specify whichreco.rd to. write to..

(Note t.bat writ.i.ng to o~ one record does llQt. in!tialise the oontents of

lower record numbers, i .. e .. unless written to eacll record up to. the end Df the

file will contain randDm (garbage) values).

The variable Dr variable list separated by CDmmas will be written sequentially

to. disk.

:'For randDm files the info.rmatiDn starting at the first byte Df the specified

variable up to. the recDrd length is transferred (see examples in Sectio.n 8).

Files that are writ ten to. must always be "CLOSE" d afterwards.

An example Df the "PUT" cDmmand to. a sequential file is:

,.

The "GET" co.mmand reads data frDm a data file

The syntax fDr sequential files is:

http:whichreco.rd

4.4

(line number) GET <filevariable, variable > (,variable •••••)

and for random files the syntax is:

~8: ~ Me.::;: ~6.

(line number) GET <.. filevariable, record, variable') (,variable•••••)

\. ~~ (JI!!'JF ~r
The line number is optional.

The filevariable is the variable name used when the file was opened.

For random files you must specify which record to read from.

The variable or variable ~ist separated by commas will be read sequentially

from disk.

WARNING

Reading items that are larger than the space allocated to the variable specified

will CORRUPT successive variables.

An example of the "GET" command from a random file i8:

1¢ DIM X(1¢) 66 bytes of space

2¢ GET F,4, X(¢) read record 4 into array

TERMINATING DATA FILE ACCESS

All data files that are "OPEtf" must be "CLOSE"d before the program stops to make

sure that the clirectory entry 1s updated with the end of file position. The

syntax for the "CLOSE" cOIll'lDaTld. 19:

(line number) CLOSE ~ filevariable)

The line number is optional.

The filevariable is the variable name used when the file was opened.

E.g.:

CLOSE F1 close file F1

5.

The CDOS system d.isk is provided with seven programs to enable the user to

efficiently manage programs and data stored on disk.

"LDIR" - LIST DIRECTORY

The "LDIR" program lists the contents of the disk and gives information about

the type and size of the files. To use the utility type in:

LOAD ¢" "LDIR"

This loads the program from drive ¢" but any other drive containing the program

could be used.

The program prompts for the drive number, enter a number between zero and three.

The total number of allocated and free blocks is displayed, followed by the

header:

Filename Blks Rsize Recs Type

There then follows a list of the files on the disk. The full name is followed

by the number of blocks allocated to the file, then the record size, number of

recorda and then file type. The file type is one of the following types:

auto-run program

program

auto-run basic

basic

sequential data

random data

5.3

The first pair are assembly language programs with the first having the auto-run

option set.

The second pair are basic programs with the first having the execute option set.

The last pair are for sequential and random data files.

"DELETE" - DELETE FILE

The "DELETE" program allows the user to remove a file and free up' its'allocated

space on a disk. To use the utility type in:

LOAD $0, "DELETE"

This loads the program from drive ~, but any other drive containing the program

could be used.

The program prompts for firstly the drive number, then the filename. It then

searches for the file on the disk, if it is found then the program prompts

"ARE YOU SURE?" Typing lIy" will delete the file, any other answer will not.

Delete will release the space allocated to the file for future use and remove

the file entry in the directory.

"FORMAT" DISK INITIALISE

The "FORMAT" program takes a virgin disk and initialises the soft sector format

required by the disk controller. To use the utility type in:

LOAD $0, "FORMATIt

This loads the program from drive ¢, but any other drive containing the program

could be used

The program prompts for the drive number. If you just hit the "Return" key

then the program will stop and return to basic. TYPe in a number between

zero and three and then the program will start formatting.

(Note that the disk size, density, number of sides and number of tracks is

set up by the "CONFIG" utility)

5.4 "DISKCOPY" - DISK PHYSICAL COPY

The "DISKCOPY" program copies byte for byte from one disk to another with no

checks on file types etc. To use the utility type in:

LOAD ¢, "DISKCOPY"

This loads the program from drive ¢,but any other drive containing the program

could be used.

The program prompts for the master (source) drive number, followed by the copy

(destination) drive number. (Note that single drive operation is possible as

the program will then prompt you to swap disks in and out of the drive). The

last prompt is for the number of tracks, to copy the whole disk just press the

"Return" key.

WARNING This utility assumes that the copy drive is of the same size, density

and l'l\l,1\lber of t:t'3ekgl. lJelE~ "fILliXJOPl'" f'oX' dis~jJnj.lar OJ:'ivel;l.

To make a disk which will .BOOT and load in the kernel you can just transfer the

first track between any e~ual sized drive, and from single density to either

double or single density and from double to double density disks. You must

then use "CONFIG" to create thE! "SYsTEM:,i" filE! on your new disk with the correct

size, density etc.

"FILECOPY" COPY FILE BY FILE

The "FILECOPY" program copies each file f:t'om one disk to another. It can

be used between drives of different sizes, or with different densities or

number of tracks/sides. To use the utility type in:

LOAD ¢, "FILECOPY"

This loads the program from drive 16, but any other drive containing the program

could be used.

The program prompts for the source drive, followed by the destination drive

number. (Note that single drive operation is possible as the program will

then prompt you to swap disks in and out of the drive).

The program reads the source directory, when a file is found it prints:

Found FILENAME

It then creates (if it doesn't exist) a file of the same name on the destination

drive and copies the file block by block. This continues for each file until

the message:

END OF DIRECTORY

is displayed.

Note tbat files whi~h have more b20bks allocated than used are compressed down

to the actual size required on the destination drive.

"RENAME" CHANGE FILENAME

The "RENAME" program allows the user to alter the name of ~ file. To use

the utility type in:

LOAD ¢, "RENAME"

This loads the program from drive ¢, but any other drive containing the program

could be used.

The program~rompts for the drive number, then present filename. It then

searches for the file, if it is found then the program prompts for the new

filename. The program checks if that filename has already been used before

renaming the file.

5.7 "CONFIG" - SYSTEM CONFIGURATION

The "CONFIG" utility program gives the user the ability to alter disk drive

parameters to suit his hardware configuration. Note that the CDOS is shipped

configured for; (a) 51", 4)t track; single sided, (b) 51", 8)t track double sided,

or (C) 8" single sided. The 51" options are for TEAC 5)tA and 5)iF drives

respectively and the 8" option ,is for S1:IUGART SA8)t)t drives.

To run this utility type in:

LOAD ¢, "CONFIG"

The program reads the "sysTEM,¢" file into memory and then extrae:ts the information

it requires to tabulate against each drive the characteristics as last set up.

The table lists the drive size (8 or 5), the number of sides (1 or 2), the

number of tracks (40 or 80 for *" or 77 for 8"), the recording density (single

or double) and the drive stepping rates (A or B). Under this table J.i:J

smaller table of stepping rates which lists the time delay in milliseconds

that the disk controller uses for any disk access. The three parameters are,

(a) head stepping speed, (b) head settling time after stepping and (c) head

load dalay after settling time. Note that with 5i" drives head load is

activated directly from the MOtor On signal and therefore doesn't need a time

delay.

The program prompts you for the following parameters:

"Drive 1" answer ¢ to 3

"Size 111 answer 5 or 8

"Sides ?" answer 1 or 2

"Tracks l' this is only asked for 5i-" drives. 8" drives are fixed

at 77

answer 4¢ or 8¢

"Density?" answer S or D for single or double density respectively.

"Timing ?" answer A or B timing parameters.

"Rate A Timing" title then appears

"Head step?" enter stepping period in milliseconds

"Head Settle?" e~ter settling period in mil]Seconds

"Head load?" enter head load delay period in milliseconds

"Rate B Timing" title appears and the same three questions about

step, settle and load occur

"Save (Y/N)1I answer Y if you have finished specifying all the change;;

or answer N to go back to ask for drive once again.

Upon typing "Y" in response to the "Save" prompt the program writes back the

modified "SYSTEM%" file and displays the message "SYSTEM¢ updated" before stopping

WARNING always maintain a baokup oOPY of the "SYSTEMS" file as inadvertent

changes using this program can make the system inoperative!

It is recommended that drive timing parameters are not changed without

careful thought and always try out your changes on only 1 drive at a time.

The newly configured system will not come into effect until you "BOOT" the

system again.

The sequence to change drive ~ to a different density or size is as follows:

(a) Re-configure drive 1 to the required characteristics for drive ~.

(b) Re-boot the system.

(c) Format a disk in drive 1.

(d) Re-configure drive ¢ to the required characteristics and restore if

necessary the characteristics of drive 1.

(e) Use "])COPY" to copy from drive ~ to drive 1 just ONE track.

(f) Use "FlLECOFY" to transfer all the files to the new system disk.

(g) You now have a re-configured system disk.

6. INTERNAL ROUTINES

There is one common routine which can be used with assembly language to access

a disk. The routine is called BYTEIO. It allows the caller to read or write

to any byte on any disk. The calling sequence and parameters are:

call:- BL'WP @ >61S¢

parameters are passed in the callers workspace:

R¢ high byte is status returned by the routine, the low byte is the

read/write flag. If the flag is non-zero then a disk write is

performed.

R1 high byte contains drive number ¢ to 3.

low byte contains high order disk linear address.

R2 low order disk linear address. Each byte on the disk is accessed

by its index starting at ¢ which reads (writes) to sector ¢, track ¢.

R3 buffer address (source or destination for data).

R4 transfer byte count

The routine returns to the calle~ with an RTWP.

The status is zero for successful transfers or it contains the code generated

by the disk oontroller. A standard error message can be generated by branching

to location ~ 655¢ with the controller error oode still in R¢.

7. ERROR CODES

There are additional error messages provided to cover the error conditions

that arise during file accesses.

Error Number Text message

50 Drive error

51 Disk write protected

52 Controller error

53 File not found

54 File not replaced

55 Directory full

56 Disk full

57 File too fragmented

58 File type mismatch

The conditions which cause these errors are:

Drive error 	 Disk not in drive, drive timing incorrect,

drive hardware error.

Disk write protected 	 For 8" disks the write protection is caused by

th~ lack oia label over the notch. For 5!-"
disks the notch must be covered to stop accidental

writing to the disk.

Controller error Damaged disk, bad format, illegal disk address,

or timeout on access.

File not found

File not replaced

Directory full

Disk full

File too fragmented

File type mismatch

The filename specified was not found on the

disk check your spelling.

During the SAVE command a check is made to avoid

accidentally over-writing a wanted program. You

must specify the REP option to update the file

contents.

There is a limited quantity of disk space reserved

for the directory (list of contents) of the disk.

A single density, 51", 4~ track disk allows only

3~ files. Most others allow more than 6~ files.

Files are allocated space in units of one sector,

so your disk has no free sectors left. (FILECOPY

may recover disk space for you).

Files are allocated space in blocks on the disk.

After frequent use all large free blocks are used

and the system has to piece together small blocks

to get sufficient space. Up to eight small blocks

are allowed before the disk space gets too frag

mented to allocate space for the file.

If you try to load a data file as a program then

you will get this error. Also when opening a

data file with the "CRE" create option where the

filename already exists but the file is of a

different type or record size will generate this

error.

lAJ r\&.fV ',t'c;; O'P6'!V CJCNYI/n /1''''-'D Is.. ~.t> ...

C{ 6 ~y~ IV ~v, l=t~ ~G'f.U./(?:D ~ l\-

wo~r-- s~Cc fi5R.- FtC<..::: t+ANDL-~VC;-.

40 I TI'fc3 (....J

l> Ok:
/

IS

~lrvCa- ttO ~Llrc-> ~tU- ~ 'I~S~~

\vTo V f1V<. llt'\US:: COI2RvP\1.tVG- .s::.."08CQ~NT

VAe-'A~tA~'$" ,

