T

CORTEX DISK OPERATING SYSTEM

VERSION 1.414

USERS GUIDE

CORTEX DISK OPERATING SYSTEM

VERSION 1.1¢

USERS GUIDE

SECTTON
1 INSTALLATION
2 BOOT

PROGRAM STORAGE
DATA STORAGE
UTTLITY PROGRAMS

INTERNAL ROUTINE DESCRIPTIONS

~1 O A B AN

ERROR CODES

1. INSTALLATION

When the "BOOT" command is executed the disk in drive ¢ is read into
nemory. The command is told what type of disk and disk drive by the

DENSITY and SIZE jumper settings.

Jumper In) Out
DENSITY SINGLE DOUBLE
SIWAT 5in gn

Note that these settings are used at "BOOT" time only and that the
CDOS software reconfigures the drive size and density. (See CONFIG

utility).

(For 53" drives that are 2 sided make sure that the signal from IC83

pin 8 is connected to pin 32 of the disk drive comnector).

2. B0OT

The "BOOT" command reads the first sector of the first track on drive ¢.

In this sector is a parameter block with a checksum, The command verifies
the checksum before using the parameter block to read in the core of the
disk operating system. The parameter block specifies the load address,
entry point and length of the core. The core is always on track ¢ of
drive ﬁ. If "BOOT" fails to read the disk or the checksum fails then it
will start again, looping indefinitely trying to read the disk. The only
way to stop this loop is to press the reset button, If YBOOT" reads the
parameter blgck successfully but then encounters an error while reading in

the core of the disk operating system then the error message:—
" %¥¥% SYSTEM ERROR = ¥*¥¥% ¢

will be displayed. Once the core has been loaded successfully then it is
exscuted as an assembly language program. The core tries to find and load
the program file called "SYSTEME". This file contains extensions to the core
gystem such as data file support and also re-configures the disk size/ﬁensity.
 If the core fails to find the file then it will jﬁst display the '¥Ready"

banner and you will only have program load and save facilities available.

+

If the core is successful in loading the "SYSTEME" file then this is executed

as an assembly language program and the banner message
"CORTEX DISK OPERATING SYSTEM 1.1¢ € 1984"

will be displayed. (Note that the revision number may change as improvements

are made to the software.)

http:successfuJ.ly

At this point it is strongly recommended that the user (with refercnce to
the FORMAT and DISKCOPY utilities in Section 5) make a copy of iic system

disk.
Type in the following:-

LOAD @&, "FORMAT"

this will load the disk format utility. Remove the system disk from drive
¢ and insert a blank disk. In answer to the question which drive type in
g. After the program has finished and asks again which drive just press
"returnt. ﬁow remove the initialised disk and insert the system disk.

Type in the following:~

LOAD g, “"DISKCOPY"

this will load the physical disk copy utility. The "Master"™ and "Copy"
drive numbers are both @ and press return in answer to the question "Number
of Tracks". The program will read in several tracks from the mester disk
and then prompt you to remove the master and insert the copy disk. It then
writes the data to the copy and then érompts you to put back the master.

This is repeated until all of the master has been copied. After the program
finighes you can now put your master system disk in a safe place and use your
new system disk. Use the utility "LDIRM fto list the contents of the system
disk. You may want to use the "CONFIG" utility to optimise the system

software for your disk size/type and configuration.

3. PROGRAM STORAGE

Once the operating system is installed then it alters the routines for

loading and saving programs to allow both cassette and disk to be used.

3.1 SAVING BASIC PROGRAMS

The statement syntax for the "SAVE' command is changed to the following:-

(line number) SAVE & drive, "filename" > é,mi g,m)

The "SAVE" command can be executed as part of a program hence it can have a
line number associated with it. The drive number can be either a digit ¢

to 3 or a variable assigned a value between Q and 3. The filename is either
-a text string enclosed in quotes or a string variable, but only the first 8
characters are used. Optional items are "REP" which specifies replace an
existing file of the same name if it exists., Programs can be saved with
the option of automatic execution upon load, this is specified with the "EX"
keyword. Note that MEX" and "REP" can occur in any sequence. Some example

commands are:-

SAVE 1, "TBEST", EX ! save on drive 1, filename TEST with auto run option
1¢ SAVE D, gN(d) ! save on drive D, filename in EN(¢)
3.2 LOADING PROGRAMS FROM RASIC

The statement syntax for the "LOAD" command is changed to the following:=-

(line mumber) LOAD { drive, "filename" t?

The "LOAD" command can be executed within a program to cause chaining from one
program to another, hence the optional line number. The drive number can be
either a constant or a variable assigned a value between ﬁ and 3. The file-
name is either a string of characters enclosed in quotes or a string variable.
Note that only the first eight characters are significant. If the program
was saved with the automatic execution option specified then the program will
start execution immediately after loading. You can load both BASIC and
Asgenbly Language pwgrams from the BASIC environment, An example of the

command is:- LOAD 3, "“MYPROG!

3.3 CASSET'E SUPPORT

The command syntax as described in the Cortex Users Guide for the "SAVEY
command now applies to the "CSAVE" command and likewise the symtax for "LOAD"

now applies to "CLOAD".

3.4 SAVING ASSEMELY LANGUAGE PROGRAMS FROM THE MONITOR

The syntax for the "D" memory dump command has an added question as shown

belows-
D £ start address > &_stop address P, gentry pointg
IDT = & filéename >
Auto=run? (YA g’fg
Device ? (0) ’
2driire)

The memory from start to stop is written either to a disk drive (f to 3) or
to cassette (C). The optional entry point is used for auto-run files to
execute immediately upon load. The IDT is the filename, only the first 8

characters are used. An example is given below:-

D ogdd oy gy

IDT = MYPROG
Auto-run? (YAN) Y

Device? 1

3.5 LOADING ASSEMBLY LANGUAGE PROGRAMS ¥FROM THE MONITOR

The syntax for the "L" memory load command has an added question as shown

below:-

L IDT = 4, filename)

Device ? gc)
: drive)

The specified file is loaded into the area of memory that it was saved from.
Either a disk drive (f to 3) or (C) cassette may be used to read the program

from.

4. DATA STOHAGE

The operating system supports both sequential access files and random access
files. A sequential file allows reading or writing of consecutive elements.
A random access file allows any element to be read or written in any order
but requires that each element be of a fixed size. Sequential‘files gupport
both variables and strings of any length mixed in a file. Strings are
written in compressed form where a sequence of more than two spaces is shrunk
to a control character followed by the number of spaces. The converse
operation occurs on reading a string in a sequential file where the control

character is detected and the spaces are restored.

4.1 CREATING A DATA FILE

All data files are created as part of the OPEN command.. The syntax for the

OPEN command iss-
(line number) OPEN drive, "filename", filevariable) (,CRE (,record size))

The line number is coptional.
The drive number is between ﬂ and 3 and can either be a variable or a constant.
The filename is elther a text string enclosed in quotes or a string variable,
but only the first eight characte%s are used.
The filevariable is a variable used to store a pointer for use by the GET, PUT
and CLOSE commands.
Optional items are "CRE" which will create a data file if it does not exist.
If you do not specify a record size then a sequential file is created otherwise
a random file is created.
EG:
19 OPEN D,#NAM (@), F, CRE, 1¢¢

or |

20 OPEN 1, "DATAM, F

4.2 WRITING TO A DATA FILE

The "PUT'" command writes to a data file. The syntax for sequential files
iss-

LB SEE RACE PP
(1ine number) PUT { filevariable, variable > (, variable, «......)
and for random files the syntax is:~

(line number) PUT (filevariable, record, variable >»(,variable, ceveses)
'3

aan pe worwble of nhomber BOY noYr caieclehon

The line numbejr is optional, ey RN, A4 .wel - (L-Pl)'&fl
The filevariable is the variable name used when the file was opéned.

For random files you must specify which record to write to.

(Note that writing to only one record does not initialise the contents of
lower record pumbers, i.e. unless written to each record up to the end of the
file will contain random {zarbage) values).

The variable or variable list separated by commas will be written sequentially

to disk.

“Por random files the information starting at the first byte of the specified
.variable up to the record length is transferred (see examples in Section 8),
Files that are written to must always be "CLOSE"d4d afterwards.

© An example of the "PUT" command to a sequential file is:i-

4

19¢ PUT P, g5 (¢) ! WRITE STRING TO FILE

4.3 BEADING FROM A DATA FILE

The "GET" command reads data from a data file

The syntax for sequential files is:-

http:whichreco.rd

(1ine number) GET ¢ filevariable, variable » (,variable)

and for random files the syntax iss~

B REE BACE NGE.

(line number) GET { filevariable, record, variable > (,variable.....)
S See GET UT

The lineAﬁﬁmber is optional.

The filevafiable is the variable name used when the file was opened.

For random files you must specify which record to read from.

The variable or variable List separated by commés will be read sequentially

from disk.

WARNING

Reading items that are larger than the space allocated to the variablé specified

will CORRUPT successive variables,

An example of the "GET" command from a random file is:-~

¢ dm x(1g) ! 66 bytes of space
2§ GET ¥,4, X(fg) ! read record 4 into array
4.4 TERMINATING DATA FILE ACCESS

All data files that are "OPEN" must be "CLOSE"d before the program stops to make
sure that the directory entry is updated with the end of file position. The
syntax for the "CLOSE" command is:-

(1ine number) CLOSE { filevariable 3

The line number is optional.

The filevariable is the variable name used when the file was opened.

E.g.:-

S CLOSE ™ ! close file ™

5. UTILITY PHOGTAMS

The CDOS system disk is provided with seven programs to enable the user to

efficiently manage programs and data stored on disk.

51 ULDIR" — LIST DIRECTORY

The “LDIR" program lists the contents of the disk and gives information abouf

the type and size of the files. To use the utility type in:i-
LOAD ¢#, "LDIR"

This loads the program from drive ﬁ, but any other drive containing the program
could be used.

The program prompts for the drive number, enter a number between zero and three.
The total number of allocated and free blocks is displayed, followed by the

headers~
Filename Blks Rsize Recs Type

There then follows a list of the files on the disk. The full name is followed

by the mumber of blocks allocated to the file, then the record size, number of

records and then file type. The file type is one of the following types:-

auto«run program
program

auto~run basic
basic

sequential data

random data

The first pair are assembly language programs with the first having the auto-run
option set.
The second pair are basic programs with the first having the execute option set.

The last pair are for sequential and random data files.

5.2 "DELETE" -~ DELETE FILE

The "DELETE" program allows the user to remove a file and free up its'allocated

gpace on a disk. To use the utility type in:-
LOAD ¢, "DELETE"

This loads the program from drive ﬁ, but any other drive containing the program
could be used.

The program prompts for firstly the drive number, then the filename. It then
searches for the file on the disk, if it is found then the program prompts

"ARE YOU SURE?" Typing "Y" will delete the file, any bther answer will not.
Delete will release the space allocated to the file for future use and remove

the file entry in the directory.

5.3 "PORMAT" -~ DISK IgITIALISE

The "FORMAT" program takes a virgin disk and initialises the soft sector format

required by the disk controller. To use the utility type ins-

S LOAD #, "FORMAT"

This loads the program from drive ﬁ, but any other drive containing the program

could he used

The program prompts for the drive number. JIf you just hit the "Return" key

then the program will stop and return to basic. Type in a number between

zero and three and then the program will start formatting.

(Noté that the disk size, density, number of sides and number of tracks is

set up by the "CONFIG" utility)

5.4 "DISKCOPY" - DISK PHYSICAL COPY

The "DISKCOPY" program copies byte for byte from one disk to another with no

checks on file types etec. To use the utility type in:-
LOAD &, "DISKCOPY"

This loads the program from drive ﬁ, but any other drive containing the program

could be used.

The program prompts fof the master (source) drive number, followed by the copy
(destination) drive number. (Note that single drive operation is possible as
the program vill then prompt you to swap disks in and out of the drive). The

last prompt is for the number of tracks, to copy the whole disk just press the
"Return” key.

WARNING This utility assumes that the copy drive is of the same size, density

and number of tracka. TUse "FILECOPY" for disegimilar drives.

To make a disk which will BOOT and load in the kermel you can just transfer the
first track between any equal sized drive, and from single density to either
double or single density and from double to double density disks. You must
then use "CONFIG" to create the "SYSTEMZ" file on your new disk with the correct

size, density etc.

5.5 "FILECOPY" -~ COPY FILE BY FILE

The»"FILECOPY"vprogram copies each file from one'disk to another. It can
be used between drives of different sizes, or with different densities or

number of tracks/sides. To use the utility type in:—
LOAD ¢, “FILECOPY"

This loads the program from drive ﬁ, but any other drive containing the program
could be used.

The program prémpts for the source drive, followed by the destination drive
number, (Note that single drive operation is possible as the program will
then prompt you to swap disks in and out of the drive).

The program reads the source directory, when a file is found it prints:-

Found FILENAME

It then creates (if it doesn't exist) a file of the same name on the destination
drive and copies the file block by block. This contimmes for each file until
the message:—

END OF DIRECTORY

is displayed.

Note that files which have more blocks allocated than used atre compressed down

to the actual size required on the destination drive.

5.6 "RENAME" -~ CHANGE FILENAME

The "RENAME" program allows the user to alter the name of any file. To use

the utility type in:-
LOAD ¢, "RENAME"

This loads the program from drive ﬁ, but any other drive containing the program
could be used.

The program prompts for the drive number, then present filename. It then
searches for the file, if it is found then the program prompis for the new
filename. The program checks if that filename has already been used before

renaming the file.

5.7 "CONFIG" - SYSTEM CONFIGURATION

The “CONFIG" utility program gives the user the ability to alter disk drive
parameters to suit his hardware configuration. Note that the CDOS is shipped
configured for ; (a) 53", 4¢ track single sided, (b) 53", 8¢ track double sided,
or (C) 8" single sided. The 53" options are for TEAC 5@A and S¢F drives

respectively and the 8" option is for SHUGART SAB¢Y drives.

To run this utility type in:-

LOAD g, “CONFIG"

The prégram reads the "SYSTEME" file into memory and then extracts the information
it requires to tabulate against each drive the characteristics as last set up.

The table lists the drive size (8 or 5), the number of sides (1 or 2), the

number of tracks (40 or 80 for 53" or 77 for 8"), the recording density (single

or double) and the drive stepping rates (A or B). Under this table is
smaller table of stepping rates which lists the time delay in milliseconds
that the disk controller uses for any disk access. The three parameters are,
(a) head stepping speed, (b) head settling time after stepping and (c) head
load delay after settling time. Note that with 53" drives head load is
activated directly from the Motor On signal and therefore doesn't need a time

delay.

The program prompis you for the following parameters:-

"Drive 2V answer § to 3

Size 7V answer 5 or 8

"3ides " answer 1 or 2

"Tracks ™ this is only asked for 53" drives. 8" drives are fixed
at 77

answer 4f or 8¢

"Density 7V angwer S or D for single or double density respectively.
"iming 7V answer A or B timing parameters.

"Rate & Timing" - title then appeaxrs

"Head step?" - enter stepping period in milliseconds

"Head Settle?™ ~ enter settling period in millseconds

"Head load?" - enter head load delay period in milliseconds
"Rate B Timing" - title appears and the same three questions about

step, settle and load occur
"Save (Y/N)" answer Y if you have finished specifying all the change:

or answer N to go back to ask for drive once again.

Upon typing "Y" in response to the "Save" prompt the program writes back the

modified "SYSTEMﬁ" file and displays the message "SYSTEM$ updated" before stopping

WARNING always maintain s backup copy of the '"SYSTEMS" file as inadvertent

changes using this program can make the system inoperative!

It is recommended that drive timing parameters are not changed without

careful thought and always try out your changes on only 1 drive at a time.

The newly configured system will not come into effect until you "BOOT" the

system again.

The sequence to change drive ¢ to a different density or size is as follows:

(2)
(v)
(c)
(4)

(e)
(£)
(g)

Re-configure drive 1 to the required characteristics for drive Q.
Re~boot the system.

Format é disk in drive 1.

Ré—configure drive # to the required characteristics and restore if
necessary the characteristics of drive 1.

Use "DCQPY" to copy from drive ¢ to drive 1 just ONE track.

Use "FILECOPY" to transfer all the files to the new system disk.

You now have a re-configured system disk,

6. INTERNAL ROUTINES

There is one common routine which can he used with assembly language to access
a disk. The routine is called BYTEIO. It allows the caller to read or write

to any byte on any disk. The calling sequence and parameters are:—
call:- BLWP @ > 618¢
parameters are passed in the callers workspace:-

Rﬁ -~ high byte is status returned by the routine, the low byte is the
read/write flag. If the flag is non-zero then a disk write is
performed.

R1 -~ high byte contains drive number @ to 3.
low byte contains high order disk linear address.

Rz - low‘order disgk linear address. Each byte on the disk is accessed
by its index starting at ¢ which reads (writes) to sector ¢, track ¢.

R3 - buffer address (source or destination for data).

R4 - transfer byte count
The routine returns to the caller with an RTWP.
The status is zero for succesaful transfers or it contains the code generated

by the disk controller. A standard error message can be generated by branching

to location :> 655¢ with the controller error code still in Rﬁ.

7. ERROR CODES

There are additional error messages provided to cover the error conditions

that arise during file accesses.

Error Number Text message
50 Drive error
51 Disk write protected
52 Controlier error
53 File not found
54 File not replaced
55 | Directory full
56 Disk full
57 File too fragmented
58 File type mismatch

The conditions which cause these errors are:-

Drive error - Disk not in drive, drive timing incorrect,
drive hardware error.
Digk write protected -~ For 8" disks the write protection is caused by
B the lack of a label over the notch., For 5}"
-disks the noteh must be covered to stop accidental

writing to the disk.

Controller error - . Damaged disk, bad format, illegal disk address,

or timeout on access.

Pile not found

File not replaced

Directory full

Disk full

File too fragmented

File type mismatch

The filename specified was not found on the

disk check your spelling.

During the SAVE command a check is made to avoid
accidentally over-writing a wanted program. You
must specify the REP option to update the file

contents.

There is a limited quantity of disk space reserved
for the directory (list of contents) of the disk.
A single density, 53", 4¢ track disk allows only

3 files. Most others allow more than 6¢ files.

Files are allocated space in units of one sector,
so your disk has no free sectors left. (FILECOPY

may recover disk space for you).

Files are allocated space in blocks on the disk.
After frequent use all large free blocks are used
and the system has to piece together small blocks
to get sufficient space. Up to eight small blocks
are allowed before the disk space gets too frag-

mented to allocate space for the file.

If you try to load a data file as a program then
you will get this error. Also when opening a
data file with the "CRE" create option where the
filename already exists but the file is of a
different type or record size will generatethis

exrroxr.,.

Rawoom fresss Fwes

o ReEN T OSSN pomm ALTD) IS UEED
db R W Avn AardE RESERUVED AR N
wWoRE SPACE RER FuE HAVDLANVG-.

¢ REceomo zze W ,S8%7 HO, THea wHIET
PUT EWEURRIARLE R.WumMBER, AR & o k.:/
Get 1y Lt UAR ‘e A‘()T&;

ST KO BWIES Wi BE TRAVSETAED
WO VAR | THUS CORRUPTING S @SEQUENT

VA ApLES |
SooTion
Dim LAR (6) (vae= wo Byns)

cET RLUSU AR AD | &, ﬂ,l\)w‘mrbgﬁj var(o)

